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On the viscous hypersonic blunt body problem 

By WILLIAM B. BUSH 
California Institute of Technology, Pasadena, California 

(Received 27 April 1964) 

The viscous hypersonic flow past an axisymmetric blunt body is analysed based 
upon the Navier-Stokes equations. It is assumed that the fluid is a perfect gas 
having constant specific heats, a constant Prandtl number, P, whose numerical 
value is of order one, and a viscosity coefficient varying as a power, w, of the 
absolute temperature. Limiting forms of solutions are studied as the free-stream 
Mach number, 1M, and the free-stream Reynolds number based on the body nose 
radius, R, go to infinity, and E = (y  - l)/(y + l), where y is the ratio of the specific 
heats, and 6 = I/(? - 1) M2 go to zero. 

Through the use of asymptotic expansions and matching, it is shown that three 
distinct regions comprise the interior of the ‘shock structure’, and that one, two 
or three regions make up the ‘shock layer’, depending on whether the quantity 
R6” is of order e-l, s-8 or r n ( n > $ ) ,  respectively, as the various limits are 
approached. The behaviour of the flow in these regions is partly analysed. 

1. General description of problem and results 
The aim of this paper is to present a brief account of the problem treated fully 

by Bush (1964) with emphasis on the methods used and the results achieved. 
In  high Mach number, high altitude flight, the Reynolds number, although still 

large, may be sufficiently low for viscous interactions and the structure of the 
viscous layers to become important. This problem is analysed in the present paper 
on the basis of the Navier-Stokes equations with the idealizations that the fluid 
is a perfect gas having constant specific heats, constant Prandtl number, 
P = O( l ) ,  and viscosity coefficient varying as apower, w ,  of the absolute tempera- 
ture. In  order to simplify the equations in a way appropriate to this problem, 
asymptotic expansions of the Navier-Stokes equations are constructed as the 
free-stream Mach number, M = U,/(yp,/p,)*, and the free-stream Reynolds 
number, R = pa U,a/,u,, go to infinity. Further, the assumption of Newtonian 
flow theory that the density ratio is large across the bow shock wave is used and 
is essential for achieving simplification of the equations. The Newtonian para- 
meter, E = (y -  l)/(y+ l), goes to zero in such a way that 

also goes to zero. 
This is essentially the same starting-point as in the analyses of Hayes & 

Probstein (1959), Cheng (1961, 1963), and others. This analysis shows that there 
are actualIy three distinct regions within the ‘shock structure’, rather than the 
two regions proposed by Cheng (1963). Further, it  is shown that there are three 

6 =  l / (y- l )M2= (1-€)/2€M2 
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distinct regimes to the make-up of the ‘shock layer’, not four, as suggested by 
Hayes & Probstein. To show this requires a great deal of manipulation of 
complicated expansions. The essential features of this mathematics are presented 
in $2, but a great deal, including the ‘matchings’ of asymptotic expansions, has 
been suppressed in order to keep this paper concise. The reader who wishes to 
pursue the details further should refer to Bush (1964), from which this paper is 
extracted, and Bush (1962), which extensively treats the concept of ‘matching’ 
for a similar yet simpler problem. 

-- 

FIUURE 1. Regions of the flow. 

The basic idea is that orders of magnitude for various terms in the equations are 
found so that the simplified equations are consistently valid in regions of reduced 
size; a criterion of consistency is the ability of a solution to join on to solutions in 
neighbouring regions, i.e. to satisfy matching and boundary conditions. 

The same method could be applied to various more realistic versions of the 
Navier-Stokes equations, with some increase in complexity. However, this paper 
takes no steps in the direction of rarefied gas flow. 

An outline is now given of the results obtained by systematic use of asymptotic 
expansions. A natural starting-point is a discussion of approximations to shock 
wave structure. A schematic picture of the flow is given in figure 1. 

The methods used here are closely related to singular-perturbation techniques 
used by Bush (1962) to study one-dimensional shock wave structure when M 
goes to infinity for the same conditions as prescribed above with the important 
exceptions that e is fixed, P is Q, and the viscosity obeys the Sutherland law. 
Further, these ideas can be used to obtain the structure of the detached shock 
wave that is supported by an axisymmetric blunt-body in a steady supersonic 
uniform stream when M and R go to infinity, in such a way that MZ0/R goes to 
zero, the viscosity obeying the power law rather than the Sutherland law. In  this 
limit, the shock layer remains finite with its thickness a sizeable fraction of the 
body nose radius a. The flow in the shock layer must be found by solving the full 
inviscid equations of motion (e.g. Van Dyke 1958). It is found, as expected, that 
the shock structure is locally the same as that of the normal shock. In  the present 
paper, since e goes to zero, the shock layer also becomes thin (the shock-layer 
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thickness divided by the nose radius of the body is O(s))  so that the shock struc- 
ture is modified. Furthermore, this additional limit allows the flow in the shock 
layer, at least in part, to be determined analytically. 

In  the solution of the shock structure as M-+w with s fixed, there are neces- 
sarily two regions to the shock structure, where the behaviour of the flow quanti- 
ties is described by two distinct sets of asymptotic expansions. One region is the 
very thin outer region, whose ratio of thickness to body nose radius is O( 1/R) -+ 0. 
The orders of magnitude of the flow quantities in this region are those for the 
quantities in the free stream. The second region is the relatively thicker inner, or 
principal, region, which has a thickness in units of nose radius (thickness ratio) 
of O(M2w/R) + 0. The velocity components and the density here are of the same 
order of magnitude as in the free stream, but the temperature and pressure in this 
region divided by their free-stream values are of O(M2)  + 00. These two sets of 
asymptotic expansions for the shock structure are shown to be the correct ones 
by proving that the expansions for outer and inner regions and the expansions 
for the inner region and the shock layer match in intermediate regions of common 
validity as well as satisfy the boundary conditions. 

It is found in this paper that, with s+O, there are now three regions to the 
shock structure and, hence, three distinct sets of asymptotic expansions are 
required to describe the behaviour of the flow quantities in the shock structure. 

The first of these three regions is the outer region. With Bush (1962) as a guide, 
it  is natural to postulate that a region should exist in the outer portion of the 
shock structure, adjacent to the uniform upstream region to guarantee the 
uniformity of the solution at upstream ‘infinity ’. This region may be thought of 
as acting as a very thin transition zone between the relatively cool free stream and 
the hot major (middle) region of the shock structure. In  the outer region the 
order of magnitude of the flow quantities is characterized by their magnitude in 
the free stream. The leading terms in the expansions for this dissipationless outer 
region and the solution of the equations of motion for these leading terms for this 
region are presented in $2. Among other things, it  is seen that the thickness ratio 
for the outer region is O( 1/R) -+ 0, just as in the s-fixed analysis. 

There must be two distinct shock structure regions between the outer region 
and the shock layer in the E +  0 problem (rather than just one, as in the s-fixed 
problem) because there is no single asymptotic expansion which will match to both 
the expansions of the outer region and to those of the shock layer as s + 0. There 
are, however, two distinguished regions, called in this paper the middle and inner 
regions, whose sets of expansions permit complete matching (i.e. outer region- 
middle region, middle region-inner region, and inner region-shock layer matching) 
in the limit as s + 0. 

The middle, or dissipation, region is also a thin region (although a thicker one 
than either the outer or inner region) with a thickness ratio of O( 1/R&) --f 0. This 
dissipation zone combines with the outer region to be essentially the ‘shock- 
transition zone’ treated by Cheng (1963). The velocityratios, (u/U,) and (v/Um), 
and the density ratio, (p/pm), are all of O(l), but the temperature and pressure 
ratios, (27/Tm) and (p/pm),  are O(l/S)+w. Again, the solutions for the leading 
terms in the equations of motion are given in $2. 

23-2 
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The solutions presented in $ 2  for the outer and middle regions, and all the 
solutions for the succeeding regions to be presented, are, of course, found only 
by matching between adjacent regions. Thus, the procedure is to propose tenta- 
tive solutions for each of the two adjacent regions based on the physics of the 
problem, and then verify that the proposed solutions are valid by showing that 
they match in an ‘overlapping zone’ that is between the two regions under 
consideration. 

For the outer region-middle region matching, the outer region expansions have 
a certain behaviour as the outer region variable, v,,, goes to infinity, which must 
match to the middle region expansions as the middle region variable, urn, goes to 
( - sin a) ; (B is defined in figure 2 .  It is found that all the required matchings 
between the outer and middle regions can be performed under the restriction 
that the Prandtl number be greater than 4 but less than #. 

The inner region is the thin, dissipationless transition zone between the middle 
region of the shock structure and the shock layer. In  this region, which is the 
‘neighbourhood of the shock interface’ alluded to by Cheng (1963), in which his 
‘shock-transition zone ’ equations are not strictly valid, there is a decrease in the 
magnitude of the normal velocity, v, and a corresponding increase in the density; 
the temperature is the same order of magnitude as in the middle region; but the 
pressure increases due to the increase in the density. In  terms of the dimensionless 
ratios introduced, the thickness ratio of the inner region is O(s/RP) + 0, and 
(u/U,)isO(l), (v/V,)isO(s)+O, while (p/pm)is O(l/s)+co, (T/T,)isO(l/S)+co, 
and (p/poo) is O( l/sS) -+ co. The solutions for the leading terms in the equations of 
motion in this region, consistent with the matching with the middle region are 
given in $ 2 .  

The matching of the middle and inner regions is, again, done with respect to 
the normal velocity, v, and middle region expansions as v,, goes to zero match to 
the inner region expansions as I vi I goes to infinity. 

It should be pointed out that, in solving for the flows in the different regions of 
the shock structure, there are quantities in each region which are not completely 
determined until the flow in the region just interior to the one under consideration 
is known. This means that the flow in the shock structure is not completely known 
until the flow in the shock layer itself is known. 

Next consider the flow between the shock wave and the body, in the ‘shock 
layer’. Different structures for this layer arise depending on the ‘similarity’ 
parameter K = (~R6~) - l . *  This parameter measures the rate at which R-+co 
compared with (e, 6) -+ 0. The quantity K = const. represents a similar family 
of flows. The parameter K-+O at various rates represents other families of 
flows. 

The shock layer has a thickness ratio that is O(s)  -+ 0 and the magnitudes of the 
flow quantities in the layer are the same as those in the inner region of the shock 
structure (see $2). In  the equations of motion for this layer the ratio of the 
viscous and heat conduction contributions to the inviscid contributions is O(K) .  
Thus, if K+O the shock layer is an inviscid one and the (inviscid) Rankine- 
Hugoniot shock relations as M -+ co and e + 0, with sM2 -+ 00, are the proper 

* 2 m / ( l +  26)wK may be identified with the K: used by Cheng. 
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boundary conditions at the outer edge of the shock layer. On the other hand, if 
K is O( l ) ,  then the entire shock layer is a viscous shock layer and the boundary 
conditions at the outer edge of the viscous shock layer are not the Rankine- 
Hugoniot shock relations, but rather are ones in which the viscous and heat 
conduction terms right behind the shock wave are important. These shock 
relations are given in $2. Note that the alternative of K +a is ruled out as not 
being physically realistic. 

Of course, the boundary conditions for the outer edge of the shock layer, in 
either case, K < O( l), are determined by matching between the inner region of 
the shock structure and the shock layer. The matching in this case is most easily 
accomplished by matching with respect to the normal co-ordinate y ,  and the 
inner region expansions as qi-+co match with the shock layer expansions as 
qL -+ gL, the outer edge of the shock layer. 

For the viscous shock conditions, the results obtained can be shown to be 
essentially those given by Cheng (1961). Further, it  should be noted here that the 
use of asymptotic expansions for the shock structure provides the theoretical 
basis for the absence of the shock structure’s thickness-curvature effects. 

In  the terminology of Hayes & Probstein (1959), the viscous flow regime just 
described is the ‘incipient merged layer ’ r6gime. It should be emphasized that the 
inviscid shock-layer equations must be solved using the inviscid outer edge 
conditions, and the viscous shock-layer equations must be solved using the 
viscous outer edge conditions. This rules out the ‘viscous layer ’ &@me, in which 
the viscous shock-layer equations are solved subject to the Rankine-Hugoniot 
relations at the outer edge. 

It should be noted that, since the ratio of the thickness of the shock structure 
to the thickness of the shock layer is O(K), the shock structure is thinner than the 
inviscid shock layer, but grows until its thickness is of the same order of magnitude 
as the shock layer thickness when the shock layer is viscous. 

The complete solution for the flow in a viscous shock layer (i.e. K = O( 1) and 
the viscous shock layer makes up the entire shock layer), due to the complexity of 
the partial differential equations of motion for such a layer, was felt to be beyond 
the scope of this investigation. However, due to the geometrical symmetry of the 
problem and the fact that the partial differential equations are parabolic in type, 
the flow in the vicinity of the axis of symmetry can be found by solving a set of 
ordinary differential equations. 

For the special case w = 1, these ordinary differential equations uncouple to 
such an extent that their solutions can be found in terms of tabulated functions, 
as shown first by Cheng (1961). For a general value of w ,  however, one must resort 
to numerical computation of the solution, although the nature of the equations 
is such that the two-point boundary-value problem can be transformed into what 
is effectively a one-point boundary-value problem. 

When K + 0, the complete shock layer consists of the inviscid shock layer plus 
the subregions necessary to satisfy the viscous boundary conditions at the body 
surface. The complete solution for the flow in the inviscid shock layer itself is 
already known, having been found by Freeman (1956) in terms of modified von 
Mises variables. The complete solution is also presented in $2, but in terms of 
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modified Crocco variables, because these variables are found to be more suitable 
for treating the inviscid shock layer and the connected subregions of the shock 
layer. 

In the case of the inviscid shock layer (u/U, = O(l) ) ,  it is found that the 
solutions, which are based on orders of magnitude which hold at  the shock wave, 
are not valid right up to the body surface (cf. Chester 1956). To remove this 
difficulty near the body surface it is necessary to introduce a body sublayer, 
imbedded in the inviscid shock layer close to the body surface, in which the order 
of magnitude of u is some small fraction of U,. The proper body layer is the one 
for which the thickness ratio is O(ee), the velocity components (u/U,) and (v/U,) 
are O(e*) and O(e2), respectively, (p/pm) is 0(1/e), (TIT,) is O(l/S), and (p /pm)  is 
O( l/eS). The existence of such a layer is, of course, verified by showing that this 
layer matches with the inviscid shock layer and has the proper behaviour a t  the 
body. 

The structure of this body layer depends on a second similarity parameter, In 
the body layer the ratio of the viscosity and heat conduction contributions to the 
inviscid contributions is D = (e;fRSW)-l. Therefore, the body layer is inviscid if 
D-tO and viscous if D = O(1). In  the terminology of Hayes & Probstein (1959) 
the viscous body layer is the ‘vorticity interaction’ layer. 

A Crocco transformation similar to that used in the inviscid shock layer is used 
in the body layer in order to match with the shock layer. The matching takes place 
with respect to t ,  where t = u/(Um sin @), i.e. the body-layer expansions as t ,  goes 
to infinity match with the inviscid shock layer expansions as t ,  goes to zero. The 
boundary conditions a t  the outer edge of the body layer, which are the same 
whether the layer is inviscid or viscous, are given in 5 2. 

Thus, when D = O(1) (and K-tO), the complete shock layer consists of the 
inviscid shock layer and the viscous body layer. As before, ordinary differential 
equations can be derived which are valid for the flow in the vicinity of the stagna- 
tion point. However, work concerning the solutions of such equations, which 
would yield the shear and heat transfer a t  the nose of the body, is not presented 
here. 

On the other hand, for D -+ 0 (and K -t 0) ,  the complete shock layer is made up 
of the inviscid shock layer, the inviscid body layer, and the ‘classical’ viscous 
boundary layer. The latter, of course, is necessary in order to satisfy the viscous 
boundary conditions at  the body. The solution for the leading terms for the flow 
quantities in the inviscid body layer is presented in $ 2  in terms of the proper 
modified Crocco variables. 

The ‘classical’ viscous boundary layer that is imbedded within the inviscid 
body layer is the last layer to be discussed. For such a boundary layer the thick- 
ness ratio is O( (e*/BSW)f) + 0, and the flow quantities are 

(U/Um) = O(&, (v /U, )  = O ( ( € ~ / B S ~ ) + O ,  

and 

as shown in $ 2 .  Note that the ratio of the boundary-layer thickness to the inviscid 
body-layer thickness is D*, and, by definition, D -+ 0 for the inviscid body layer. 
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The matching between this viscous boundary layer and the inviscid body layer 
takes place with respect to the normal co-ordinate, y. The boundary-layer 
expansions as rBL goes to infinity match with the inviscid body layer as re goes 
to zero. The boundary conditions at the outer edge of the boundary layer, 
determined by this matching are presented in $2. 

Table 1 summarizes the results just described and the orders of magnitude for 
the skin-friction c, = ,uw(au/ay),/(B,ua Um/a2), and the heat transfer coefficient, 
c h  = kw(aT/ay)w/(km Tala). 

K = 0(1) Viscous shock layer Cf = O( 1 j S S W )  
D+CX %, = O( l / & + W )  

K-tO Inviscid shock layer cf = O( I/€&) 
D = 0(1) 8, = O( l / € * S l + W )  + viscous body layer 

- 
K+O Inviscid shock layer C,  = O(l/D*eSW) 
D+O + inviscid body layer 8, = O( l/D*dS1+w) 

+ viscous boundary layer 
TABLE 1. 

In  the next section the equations of motion and the forms of the asymptotic 
expansions are presented. 

2. Expansions for the regions 
2.1. The equations of motion 

Non-dimensional variables are used, all lengths being referred to a, the body nose 
radius; all velocities to Urn, the free-stream speed; and the pressure, density, 
temperature, and viscosity to their free-stream values. Thus, the notation being 
as in figure 2, we make the following replacements: 

(x/a, $/a) + (x, y), (B/a,  a ~ )  -+ (B, K ) ,  (UIUa, v/Uco> + (u, V) 
and &/Pa,  PIP^, TIT,, P / P ~ )  -+ (P ,  P, T, 1~). 
Further, let ( = x, 7 = y- Y ,  where Y is the non-dimensional measure of the 
distance from the body to the region under discussion. Then, the equations of 

FIGURE 2. Notation. 
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continuity, tangential and norma1 momentum, energy, state, and the viscosity 
law are equations (1)-(6), respectively, expressed in terms of these non-dimen- 
sional quantities. These equations comprise the Navier-Stokes system to be 
solved with the uniform conditions at upstream ‘infinity’ and the no-slip and 
temperature conditions at the body surface. 

( 1 )  
B(pv) 1 a(pu) K ~ V  p(u sin @ + v cos @) -+-- +---+ = 0, a7 h ax h r 

uau au Kuv 

I) +--- Xla:( p [:(:; - -++V ] - __  :; usin@+vcos@ 
r 

+ l a  (p”) +--- sin@paT]I 
hax hax r h ax 
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where h = l + ~ ( Y + v )  and r = B+(Y+q)cos@,  

and (a/a4 = (Vt) - Y'( t )  (W?l). 

-+- aro 4 T; = 0, avo 3 vo sin @(to) 
au, 4u0 - - w1/4p) Q y;, ( t o )  7 

avo 3w0 

2.2 The uniform upstream region 
In  the uniform upstream region the flow quantities are 

p = p = T = 1, u = cos@, v = -sin@. 

) 
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(7)  

2.3. The outer region of the shock structure 
The co-ordinates for the outer region are 

x = 5 = t o ,  Y = Y( t )+r  = sYo(to)+(1/R)r,, (8) 

and the leading terms in the expansions for the flow quantities in terms of the 
small parameter S are 

(9) 

The first-order equations of motion, based upon these expansions, with to and 

1 u = cos @ + S1/puo + . . . , 
p = l+S3/@p0+...,  p = p o +  ..., T = To+ .... 

w = - sin @ + 63/4pw0 + . . . , 

vo as the independent variables, are 

PO = To, p0 = vo/sin @ (to), i 

= 0. J a(T0- 1) 4 P ( T 0 -  1) _ _ _ _ _ _ ~  
avo 3 wo 

Thus, the flow quantities in the outer region may be written as 

where wo(to) and #,(to) are functions that are determined only after matching 
with the solution of the complete shock structure. 

2.4. The middle region of the shock structure 
For the middle region 

x = 5 = tm Y = Y ( t )  +?l = eYm(trn) + (l/RS") r m ,  

u = urn+ ..., v = vrn+ ..., 
( 1 2 )  

p = pm+ ..., p = (l/S)prn+ ..., T = ( I / S ) T r n +  .... 
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The equations associated with these expansions are 

P m  = PmTm, PmVm = -sin (Em), 

a v m  ---- 4 una = 0,  Urn = urn- cos CD (cm), Vm = v,+sin 0 (Cm),  av, 3vm 
a2Tm (QP - 1 )  aTm --______ av,z vm avm 
a r m  4 T;  --+-- = 0.  
aVm 39113 CD Vm 

Pw: 
2(2 - P) [sin CD + urn]%, -____ 

Again, the quantities wnL(tnt) and Sm(tm) depend on the solution of the complete 
shock structure. 

2.5. The inner region of the shock structure 
The quantities in the inner region have the following representation: 

2 = t = g,, y = Y(t)+T = €Y;(&)+(€/R6")q,, (16) 

} (17) 
u = W(g,)+EU(+ ..., v = €W,+ ..., 

T = (l/S)[O(~,)+€T,+ . . . I .  P = ( l / ~ ) p i +  ..., p = (I/eS)p$+ ..., 
Introducing the quantity & = v, - Yi (&) W&),  the simplified equations of 

motion for the region and their solutions are 

i ( 1 8 )  

pi = pi 0, pi& = - sin CD, 
- 2sin CD (el%) -$Ow (a&/ay;) = sin2 CD, 
O"(au,/ayi) = sin CD (cos CD - W ) ,  

I o w  8% _ _  - - sin @ [(& sin2 CD - 0) + ~ ( C O S  CD - W)2], 
P ari 

pi = -sin@/&, pi = p i @ ,  

u, = w, (&) -sin CD (cos CD - W )  {g&) - yz'}/Oo, 

= AS,(&) - Psin CD [(#sin2 CD - 0)  + ~ ( C O S  CD - W)2] {gi - q , } /@w, ,  I (19)  
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In  the course of finding these solutions it is found that 
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I wo = w, = - (cos CD - W)/(sin 

where W and 0 are determined from the shock-layer solution. 

2.6. The shock layer 
For the shock layer 

From matching with the inner region of the shock structure, it  is found that 
the boundary conditions at the outer edge of either an inviscid ( K  -+ 0 )  or viscous 
( K  = O( 1 ) )  shock layer, YL, whose position is determined only after solution of 
the shock-layer flow, are 

U L  ( E ,  gL) = W(6);  
TL(& YL) = a((); O,,,(f) = +sin2 a((), OviSc to be determined, 

vA5, gL) = - (20isin @ (5)) +Yi(t) W ( 0 ,  
KOW(aULpVL) (5, YL) = sin CD (cos CD - W ) ,  

KOW(8TL/Gy,) (6, gL) = Psin CD +[(sin2 CD - 2 0 )  + (cos CD - W)z]. 

Knv(C) = cos @ ( E ) ,  Wvisc to be determined, 

It should be noted that, once these outer edge boundary conditions are deter- 
mined, the flow in the entire shock layer is found without further reference to the 
shock structure. That is, equations (23)  are the appropriate 'shock conditions'. 
For an inviscid layer, K goes to zero and the usual Rankine-Hugoniot conditions 
are recovered. The shock conditions are essentially those given by Cheng (1961). 

The reduced equations of motion for the inviscid or viscous shock layer are 
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Ifs = $, tL = uL/cos CD = uL/u, and rL = {(T;/B) (au,/aq,)), then the solutions 
for the flow in the inviscid shock layer, consistent with shock boundary conditions, 
are 

TL = &[1 -$c'], 

These solutions are equivalent to those found by Freeman (1956). 
Complete solutions, however, are not presented for the viscous shock-layer 

equations since extensive numerical work would be necessary. However, the 
shear and heat transfer at the nose of the body for the viscous shock layer 
computed for the case of w = 4, P = 3, and a wall temperature that is zero are 
presented in figures 3 and 4. 

2.7. T h e  body layer 

The appropriate variables in the body are 

x = t, Y = &*re, (26) 

} (27) 
u = &hC+ ..., v = E'VC+ ..., 
p = (l/e)pc+...,  p = ( l / ~ S ) p , +  ..., T = (l/S)T,+ .... 

The leading terms of the inviscid or viscous equations of motion for this 
region are 

Pc = PcT7 I 

From matching with the inviscid shock layer, the boundary conditions at the 
outer edge of the body layer, which are the same whether this layer is inviscid or 
viscous, are 
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K 
FIGURE 3. The skin friction coefficient ( C f ) ~  = lim 

s. tL+o 
(TL) v8 the similarity parameter 

K of the viscous shock layer. 

0 1 2 3 4 5 6 7  
K 

FIGURE 4. The heat transfer coefficient (C,)L = the similarity 

parameter K of the viscous shock layer. 
- 
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In  Crocco variables (s = 6, t, = u,/cos CD, 7, = {(T;/B) (au,/aqc)>), these boundary 
conditions become 

Pc(s,tc+a) =p,(s), T , ( s , t , + ~ )  = $, 7 c ( ~ , t , + ~ )  = 21-wpc(~). (29b)  

Using this second set of boundary conditions, the solutions for the inviscid body 
layer are found to be 

PJS, t c )  = P&), 4)  = 8, 7,(5, tc) = 21-wpc(s), 

No solutions are presented for the viscous body layer; again numerical work 
would be necessary. 

2.8. The viscous boundary layer 
The quantities in the viscous boundary layer are 

Matching with the inviscid body layer yields the boundary conditions at  the 
outer edge of the boundary layer, which are 

TBLK TBL+ ~ 0 )  = 8, PBL(L  ~ B L  -+ 00) = PBL(E) = PA&), 
uBL(E, VBL+ a) = E - 21n ~ ~ P C ( E ) I I * -  

} (34) 

No solutions are presented here for the viscous boundary layer. Problems of 
this type have been studied in great detail. 

The author would like to express his thanks to Drs #G. B. Whitham and J. D. 
Cole for their helpful suggestions and kind advice during the preparation of this 
paper. 



On the viscous hypersonic blunt body problem 367 

REFERENCES 

BUSH, W. B. 1962 J .  de Me'canipue, 1, 321. 
BUSH, W. B. 1964 Doctoral Thesis, Calif. Imt. of Technology. 
CHENQ, H. K. 1961 Proc. 1961 Ht.  Trans. and Fluid Mech. Institute. Stanford, California: 

CHENG, H. K. 1963 Cornell Aero. Lab. Rep. no. AF-1285-A-10. 
CHESTER, W. 1956 J .  Fluid Mech. 1, 490. 
FREEMAN, N. C. 1956 J .  Fluid Mech. 1 ,  366. 
HAYES, W. D. & PROBSTEIN, R. F. 1959 Hypersonic Flow Theory. New York: Academic 

VAN DYEE, M. D. 1958 J .  Aero. Sci. 25, 485. 

Stanford University. 

Press. 




